Michigan: Destined for an early exit?

Michigan is my favorite college basketball team, and for the first time in awhile, they are threatening to make a deep tournament run. However, they just lost three of four during a tough stretch against Indiana (L, away), Ohio State (W, home), Wisconsin (W, away), and Michigan State (W, away). I’m not writing them off — they only lost the away games — but some bad signs appeared in these games. Here’s the Game Stack for all four combined:

Mich 4 games 2-2013

Michigan looks good on turnovers, but that comes at a cost — they get crushed on free throws and two point percentage. Having watched the games, I can connect the dots for you: the Wolverines don’t drive to the hoop much against good teams. They have some great shooters who can get reasonably open (Trey Burke, Tim Hardaway, Jr.) who are happy to “settle” for jumpers.

This keeps the ball out of danger in the lane (low turnovers), but it means that Michigan never gets to the line and shoots a lower percentage on twos as well. Michigan also rebounds a lower percentage of their own misses than the opponent, which could be related — a lot of “second chances” are just put-backs after a shot close to the hoop.

So, is Michigan sunk? We’ll see. I have some faith that Mitch McGary can improve and find some high percentage twos down low, but right now, Michigan is probably not efficient enough offensively and not good enough on the boards to compete with the best teams in the country. I would worry less about four games if the problem was just poor shooting in a small sample, but the problem seems to be about playing style against good defenses. I don’t think that’s going to change.

If you’re interested, here are the Game Stacks for all four games. The trends I discussed are pretty consistent across the games:

Michigan at Indiana 2-2-2013 Ohio State at Michigan 2-5-2013

Michigan at Wisconsin 2-9-2013 Michigan at Michigan State 2-12-2013

Basketball Stacks part 2: Rebounding

Yesterday, I posted a new idea for visualizing box scores: Game Stacks. While the first version did a good job of showing shooting percentages and turnover rates, it didn’t do a good job on rebounds. As my pops pointed out, Indiana had a big rebounding advantage over Michigan by the basic numbers (36-22), so it seemed wrong to rely only on the height of the stacks to determine who rebounded better. The reality: Michigan got more chances not because they rebounded better, but because they had more misses — and you have to miss to get a second chance. The height of the stacks just showed that Michigan got more offensive rebounds, even though their rebounding rate was terrible.

So, round two. Here’s the Michigan-Indiana Game Stack redesigned to capture rebounding:

Michigan at Indiana 2-2-2013

Without play by play data, I had to keep the rebounding simple — I figured out the offensive rebound rate for each team:

Off reb rate = your off rebs/(their def rebs + your off rebs).

Then, I multiplied this rate by the relevant number of shots to generate the “Missed (O Reb)” category for each type of shot (the dashed regions). Each dashed/empty combo now visualizes the offensive rebound rate for the relevant team.

Now the picture is clearer:

Visualization: Basketball Game Stacks

Note: On my dad’s advice, I posted another version of the Game Stacks that depicts rebounding rates, rather than just total offensive rebounds. The discussion in this post is a little naive on that point — the new version yields a better analysis of rebounding.

I have a general hang up when looking at the box score for basketball (or listening to announcers list off statistics). I see some rebounding numbers, but I can’t tell who rebounded better without offensive and defensive breakdowns, plus the number of shots missed by each team. And I see shooting percentages and shot attempts, but it’s hard to put it all together into how a team got its points.

I realized that what I really want to see is not complicated. Here’s the list:

  • What each team did with their scoring chances:
    • Two point attempts
    • Three point attempts
    • Free throw trips (2 attempts)
    • Turnovers
  • Efficiency on each type of shot
  • Rebounding advantage in terms of extra scoring chances
  • And, of course, total score

All these stats exist, but there should be an easy way to see all of it at once and get a sense for how the game was won. Here’s my first try, the Game Stack:

Michigan at Indiana 2-2-2013

The picture shows total “plays,” or chances to score, for each team, and total points, broken down by type. In a quick glance, you can see that Indiana was out-rebounded (Michigan got three more chances to score) and turned the ball over a ton. However, on just over 60 non-turnover plays, the Hoosiers Continue reading

What does Chip Kelly have to do with spotting the ball?

I’m pretty excited that Chip Kelly is coming to the NFL. If you’ve watched the Oregon Ducks in recent years or the Patriots hurry up offense, you’re probably excited too. It’s fun to see teams try something different, and I like seeing fast offenses break defenses’ will using such a simple concept. Sometimes, the defense isn’t even lined up when the ball is snapped. Teams spend tons of energy trying to outsmart defenses, but a fast offense can make it easy.

If the speed game catches on, it has other possible implications. For example, the NFL could shorten the play clock to encourage game pace. Most people would enjoy more football and less standing around. Whether the play clock changes or not, teams will want smaller, faster players on offense and defense, reversing the rapid growth in player BMI over the last thirty years. A size reduction might help with concussions — though force equals mass times acceleration, and acceleration might go up — and it could also help with heart, heat, and other obesity-related illnesses/deaths that lineman face.

So what does this have to do with first downs? Bear with me. The NFL has a credibility problem with it’s measurement technology. I chuckle every time the chain gang trundles out and the ball is measured one link short. Football certainly is a game of inches: in the case of spotting the ball Continue reading

Sour grapes

True Wins did okay over the weekend — predicting the 49ers and Patriots victories, but whiffing on the Ravens and Falcons. Picking the team with more True Wins so far has six correct and two wrong, while relying on actual wins to pick has just four right, two wrong, and makes no prediction on two games (same records for Pats-Texans and 49ers-Packers).

The True Wins king — Denver — is out! Over the last ten years, the top team in True Wins has won four Super Bowls, and the second ranked team has won two more. It’s up to the Patriots (#2) to carry on the tradition, even though the 13.5 True Win Broncos had the second highest total in the last ten years (behind another famous losing team that you may remember). That couldn’t save them from one very cold Manning flinching first in a stalemate and one very cold Champ Bailey getting toasted over and over again (not to mention one very cold referee blowing a couple video reviews and throwing a ton of flags on the Broncos). More on the playoffs later in the week, but for now, I want to go back to some old predictions and talk about this year’s playoff spectators.

The Sour Grapes Club

Last year, I broke the outsiders-looking-in into four groups (follow the link — the predictions are worth a read-through in their entirety):

  • The Michael Vick Division (pretty good teams that had some bad luck): Eagles, Bears, Chargers, Cowboys
  • The Cam Newton Division (mediocre teams with something to build on): Panthers, Titans, Seahawks, Dolphins, Vikings
  • The Rex Ryan Division (overconfident teams that need to reassess their approach): Jets, Cardinals, Bills, Raiders, Chiefs
  • The Sam Bradford Division (teams that need to start over completely): Redskins, Jaguars, Browns, Colts, Rams, Buccaneers

The first thing that has to change are the names. Cam Newton moves up a notch and replaces Vick, who unfortunately goes all the way around the horn to replace Bradford in the blow-it-up division. Rex Ryan, one of the most overconfident men in the world, is saved by Tony Romo and his buddy Troy Aikman — I can’t listen to Aikman defend Romo anymore. I’m sticking with my man Stafford and handing the “something to build on” division to him, even if my Lions regressed this year.

Here are the standings this year:

2012 non playoff standings

From the first group (I expected good things): Continue reading

Some questions and some predictions

Predictions

If you read my post last week, you know that the AFC is a two-horse race and the NFC is a mess. All four first-round games agreed with the True Wins predictions. I didn’t trust the Seahawks on the road, but True Wins came through (11 for the Seahawks versus just 9.5 for the Skins). So, what are we left with? Two clear favorites in the AFC (Patriots and Broncos) and two toss ups in the NFC. True Wins alone takes 49ers over Packers (11.5 to 11) and Seahawks over Falcons (11 to 10.5). I’m going to stick with the home teams in both cases, but don’t expect blowouts in the NFC unless the turnover margin is really skewed.

Questions

As part of football month on the blog, here are a couple random questions and answers that I’ve accumulated.

Should the NFL eliminate kickoffs? Greg Schiano, the Buccaneers crazy coach, thinks the NFL should get rid of kickoffs to protect player safety. A Rutgers player was paralyzed running kick coverage while Schiano coached there, so he knows exactly how dangerous kickoffs can be. Never mind that this is the same coach who runs a “kneel down blitz” when the other team is trying to kill the clock, a tactic that might work once when the other team is not expecting it, but will probably never work again.

Continue reading

Playoff Appetizer: True Wins Plus (Fumble Adjusted)

We might be halfway through the first quarter of the first NFL playoff game of 2013, but I’m still finishing up with baseball and just getting warmed up on football. Football month on the blog officially kicks off today — there’s lots of interest stuff to come, from innovative rule ideas and play calling to new prediction methods and game analysis. Today, I’m trying an addition to the measure of NFL team quality that I debuted last year: True Wins. True Wins are calculated as follows:

True Win = Blowout Wins + Close Wins/2 + Close Losses/2 + Ties/2

You may recognize the intuition from pythagorean expectations — you get full credit for blowout wins (I define this as more than 7 points), but no extra credit for winning by huge margins, and you get half credit for all close games, since those probably come down to luck more than skill. Last year, I showed that True Wins predicts a little better than pythagoreans, and it’s a whole lot more direct. Both measures are much better than using wins alone, which unfairly penalize (reward) teams that lose (win) a lot of close games.

What Else is Luck-Driven? Fumble Recoveries?

With the playoffs coming right up, I decided to try an improvement that adjusts for possible luck in fumble recoveries as well. Here’s the logic (from Football Outsiders):

Stripping the ball is a skill. Holding onto the ball is a skill. Pouncing on the ball as it is bouncing all over the place is not a skill. There is no correlation whatsoever between the percentage of fumbles recovered by a team in one year and the percentage they recover in the next year. The odds of recovery are based solely on the type of play involved, not the teams or any of their players . . . Fumble recovery is a major reason why the general public overestimates or underestimates certain teams. Fumbles are huge, turning-point plays that dramatically impact wins and losses in the past, while fumble recovery percentage says absolutely nothing about a team’s chances of winning games in the future. With this in mind, Football Outsiders stats treat all fumbles as equal, penalizing them based on the likelihood of each type of fumble (run, pass, sack, etc.) being recovered by the defense.

The keys are:

  1. Fumbles are huge turning points in games
  2. Teams don’t maintain high or low recovery rates over time

To quantify #1, I determined the point value of a recovery. A simple regression of point differential in each game on total fumbles and fumbles Continue reading